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LETTER TO THE EDITOR 

The renormalisation of probability distributions in the 
random field problem 
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Instituto de Fisica, Universidade Federal Fluminense, Outeiro de S J Batista, s/n, Niteroi, 
24210, RJ, Brazil 

Received 30 March 1990 

Abstract. We study the Ising ferromagnet in a random field following the renormalisation of 
the distribution of random fields. The disorder in the local field induces fluctuations in the 
exchange couplings which are taken into account. Our method allows a straightforward 
determination of the exponents associated with the zero-temperature fixed point which 
governs the critical behaviour along the critical line and in particular the critical slowing 
down. We find the correlation length exponent v = 1.0 which is in very good agreement with 
numerical calculations. We also obtain the crossover exponent for small random fields. 

The study of disordered magnetic systems has experienced enormous progress in this 
decade. Among these problems, that of a ferromagnet in a random field has reached a 
stage where, after much controversy, much of its behaviour is now understood [l]. It 
remained essentially a purely theoretical problem, formulated originally by Imry and 
Ma [2] , until the work of Fishman and Aharony [3] showed that a diluted antiferromagnet 
in a uniform field provides its physical realisation. In the course of the theoretical efforts 
to understand the random field problem and in particular the question of its lower critical 
dimension, d,, the failure of the renormalisation group E expansion to provide the correct 
answers [4] came as a surprise. On the other hand, real space renormalisation group 
techniques have been applied successfully to the study of ferromagnets in random fields 
revealing its complex behaviour especially at very low temperatures [ 5 ] .  More elaborate 
statistical treatment by Mckay and Berker [6], within the Migdal-Kadanoff approach, 
have been able to correctly reproduce the experimental results concerning, for example, 
the critical dimension. We should recall that early renormalisation group studies of spin 
glasses, using the Migdal-Kadanoff method, have correctly predicted the lower critical 
dimension for this intricate system [7] and so it is not so astonishing to find that in the 
random field case, this treatment also proves to be successful. In fact the study by Mckay 
and Berker [6] provides a nice realisation of the phase diagram for the Ising ferromagnet 
in a random field, for d > d,, which was anticipated by Bray and Moore [8]. Also it 
brought up the concept of hybrid-order transitions which seem promising in reconciling 
controversy about the order of the phase transition of ferromagnets in random fields. It 
would be very interesting to check if this approach, in the case of large dimensions, will 
eventually yield the phase diagram obtained in the mean field approximation where the 
existence of a tricritical point has been demonstrated for a bimodal distribution [9]. 
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In this letter we study the Ising ferromagnet in a random field using the real space 
renormalisation group in hierarchical cells (see figure 1) .  We make use of the concept 
of transmissivity [lo] to obtain recursion relations for the random field and the tem- 
perature or coupling constant. Our technique allows us to follow separately the evolution 
of the distribution of random fields and that of coupling constants along the renor- 
malisation process. It differs consequently from that of [6] where the random fields at 
neighbouring sites and their connecting bonds are inextricably coupled together. Due to 
this separation, our approach provides the appropriate framework for a straightforward 
determination of the critical line and the critical exponents associated with the different 
fixed points, and the fixed-point form of the probability distributions. The notion of 
transmissivity [lo] and its generalisation for the case where the system is under the 
influence of a magnetic field [ l l ]  has been extensively used to deal, successfully, with a 
variety of problems [ 5 ] .  The basic idea is to introduce two auxiliary quantities, the 
transmissivities t+ = (Z++ - Z+-)/(Z++ + Z+-) and t- = ( Z - -  - Z-+)/(Z-- + 2-+) 
where Zap are the partition functions of the cells with the spins at the terminal sites 
(figure 1) kept fixed pointing up or down (+ or - respectively) in each case. We then 
use the property that the transmissivities remain invariant under a change in the length 
scale of the system to obtain recursion relations for the physical quantities of interest. 

The Hamiltonian describing the system in each cell can be written in a convenient 
form as 

where (si = k 1 ,  J, are nearest neighbour ferromagnetic couplings, and ri = hi/lhil. The 
hi are random fields acting on the spins at sites i. Calculating the transmissivities t+ and 
t- for the cells with b = 1 and b = 2 shown in figure 1 and using their property of 
invariance under a change of length scale, we obtain recursion relations for the random 
fields and coupling constants of the form: 

(h ,  /I>’ = f[(hi/Jij> , (T/Jij)I (2) 

(TIJ)’ = d(hi/Jij) ,  (T/Jij)I (3) 

where the prime refers to the renormalised quantities in the smaller ( b  = 1) cell (J, = 
Jj i ) .  We emphasise that a single renormalised field appears for the b = 1 cell since the 
other cancels out due to the definition of the transmissivities. The same occurs for the 
random fields acting on the spin in the equivalent terminal of the larger b = 2 cell. It is 
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Figure 2. The phase diagram for d = 3 obtained 
for case 1 (---) and case 2 (-) (see text) 
with a Gaussian distribution. H/4J  represents 
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Figure 3. The phase diagram for the three-dimen- 
sional king model in a random field (case 2) with 
a Gaussian distribution. The inset shows the criti- 
cal line at low temperatures described by the law 
&(T)  = hA - a ( T / J ) 2  with hff = 0.57 and a = 
0.29. 

this cancellation which allows us to write the recursion relations in the simple form 
shown above. They express in a clear way the uncorrelated nature of the random fields 
acting in different sites. Because we have assigned two fields to each bond, the total field 
acting on a spin in a given site is a sum of z random fields where z is the number of bonds 
which converge to this site. This procedure, in the case of a uniform field, is equivalent 
to assigning a weight to the magnetic field acting on a spin equal to the coordination 
number of its site. It leads to the correct result that the uniform field scales like 
h; = bdh,  at the zero-temperature strong coupling attractor of the pure ferromagnet 

The renormalisation group equations shown above represent a system of coupled 
equations, and because the local fields are random the couplings also become random 
in the renormalisation process. We shall consider here the case where the couplings 
within a cell become random after the first iteration and also the simpler case of (2) and 
(3) where temperature fluctuations are taken into account for different cells of the 
ensemble of random field configurations but not within the cells. This amounts to 
defining all Jij = J in (2) and (3) above. For small random fields, and also at low 
temperatures, this represents a very good approximation since, starting withJii = J ,  the 
temperature or coupling constant distribution always remains very narrow compared to 
its average value in these ranges. The usefulnessof this approximation can be appreciated 
in figure 2, where the phase diagram for d = 3 is calculated for constant J in  the cell (case 
1) and in the general case of random couplings within a cell (case 2). It can be seen that 
the phase diagrams are nearly the same except over a small temperature range. 

The iteration of the recursion relations above do not generate negative temperatures 
or couplings so frustration is never introduced in the system. Also the distribution of 
coupling constants has a negligible weight at zero-J and consequently dilution does not 
play a role in this problem. 

PI. 
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In order to iterate (2) and (3). we start with a given value of T/J and draw random 
fields H = h/J from a distribution Ph(H) ,  with zero mean value and a given value for 
(p). The random fields are fed into the right hand side of these equations to generate a 
new distribution P i ( H )  of random fields and now also one of random couplings 
P,(T/J). This procedure is repeated a sufficient number of times and we follow what 
happens to these distributions during this process. The field distribution provides the 
relevant information to obtain the phase diagram. On the other hand the distribution of 
coupling constants yields the exponent, y , which enters in the modified hyperscaling 
relation as we discuss below. 

In this letter we consider rectangular and Gaussian random field distributions which 
have a finite weight at the origin. Different distributions with a null probability of zero 
random field, like the bimodal distribution [9], may be in a different universality class 
and give rise to a tricritical point in the critical frontier. We observe two basic features 
in the course of the iteration of the probability distributions. Firstly there is an evolution 
in the shape of the original random field distributions. In the rectangular case, the 
distribution changes and approaches a Gaussian characterised by the ratio between the 
second and fourth moments ( ( H 4 ) / ( H 2 ) 2  = 3 for a Gaussian) and visual observation of the 
computer screen. Also the width or second moment (P) of this fixed point distribution, 
which is always centred in zero field ( ( H )  = 0), either increases or decreases due to the 
renormalisation. In the latter case the flow is towards the attractor of the ordered 
ferromagnetic phase characterised by ( T / J )  = ( H 2 )  = 0, where the averages (. . .) are 
taken over the respective distributions. This corresponds to an ordered situation, that 
is to a random field distribution and temperature which are not sufficient to destroy the 
ferromagnetic phase. In the former case the flow is towards ( T / J )  = 0 and (H’) = 
which is clearly associated with the destruction of the ferromagnetic order. The line 
separating the basin of attraction of these two fixed points is the critical line that is shown 
in figure 3 for the three-dimensional case. This phase diagram was obtained by starting 
with a Gaussian distribution P,(H) to generate a new distribution with typically N = 
30 000 elements (so that 12 X 30 000 draws were required, just for the random fields, at 
each step). To obtain the critical exponents, larger numbers of elements were considered 
( N  = 2 x lo5). Along the critical line, the flow is towards the strong coupling attractor 
at (T/J)  = 0 and (H2) = (H2), which is unstable at zero temperature. This instability is 
associated with an exponent v which characterises the divergence of the correlation 
length 5 at zero temperature. That is, defining hR = ((H2))’12 and hk = ( (H2) , ) l12 ,  we 
get 5 ( h R  - hA)-” at T = 0 and h R  + hk .  We have found v = 1.0 which is in very 
good agreement with the numerical calculations of Ogielsky [ 121 which also yield v = 
1.0. We point out that ours is not a strict T = 0 calculation, although we worked at very 
low temperatures ( T  < Tc/40) where v has become ‘saturated’. Also we considered the 
Gaussian as a fixed point distribution. Note that there is an error of at least 1/N’I2, where 
N = 2 x lo5, in our result. 

The distribution of coupling constants, as mentioned before, always remains very 
narrow ([((T/J)2) - (T/J)2]’/2/(T/J) = for small random fields and low tem- 
peratures (-10-l). The sharpness of P,(T/J) can be appreciated from figure 2 where 
the critical line is shown for cases 1 and 2 (constant and random couplings in a cell 
respectively). These lines coincide, within numerical accuracy, except in the range 
0.05 < (T/J) < 0.6, which is also the region where the scattering of the values of T/J 
around the mean value is larger. Note that the critical exponents calculated in both cases 
coincide. 

We point out that ford = 2 we do not find a critical line and the flow is always towards 
the attractor of the disordered phase at (T /J)  = 0, (H’) = 30. 
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On the critical line, at very low temperatures, approaching the strong-coupling fixed 
point at ( H 2 ) , ,  we find that temperature scales as (T/J)’ = U( T/J)  and consequently is 
an irrelevant ‘field’. This irrelevance of temperature has been associated with the 
anomalous dynamics observed in random field systems 1131. In fact the exponent y 
controls the critical slowing down close to the transition line [13]. It is also responsible 
for the dimensional reduction which manifests itself for example in the modified hyper- 
scaling relation [8] v(d  - y) = 2 - a. Here d is the dimension of the system, v and a 
are the correlation length exponent (defined before) and the specific heat exponent, 
respectively. Both are associated with the zero-temperature fixed point [8]. We can easily 
obtain this important exponent which we find to bey = 1.48. This value is consistent with 
an inequality predicted by Berker and McKay [14] for this problem. When we substitute 
the values fory and v calculated above in the modified hyperscaling relation, we get a = 
0.48, which agrees with the existence of a second-order transition along the critical line. 

We can also calculate how a uniform field ha renormalises at the strong-coupling 
fixed point at T = 0 and hA essentially by considering a random field distribution with 
non-zero mean. We find hi = b”h, withx = 3.0. Theremarksconcerningthe evaluation 
of v also hold here. Since the critical behaviour along the critical line is controlled by 
this zero-temperature fixed point, the fact that the exponent x = 3 (the dimension of the 
system) indicates that the magnetisation must be discontinuous when crossing the 
frontier in a finite random field [6]. This result together with the value of a obtained 
from the modified hyperscaling relation support the existence of an hybrid-order phase 
transition for the random field problem in three dimensions as suggested by Mckay and 
Berker [6]. 

Since we have found the Gaussian distribution of random fields to be a fixed point 
distribution, we can calculate the crossover exponent at small random fields and at T,, 
the finite temperature transition of the pure ferromagnet. We find Q, = 2.0, consistent 
with the linear increase of critical line at small random fields and the generalised scaling 
hypothesis [ 151 which implies v = 2 / q ,  where v is the shift exponent. Note that and 
I$ are defined here with respect to hR such that the equation for the critical line is T,(h,) = 
T, - ghg and the scaled field variable h”,/j&l”. When comparing these results with 
experiment one should keep in mind that in real systems the observed crossover-may be 
from random exchange to random field behaviour [ l ]  and not that calculated above. 

Finally we discuss the form of the critical line at very low temperatures. As shown in 
the inset of figure 3, this line is described by the expression hA(T)  = hA - uT2 ,  so that 
the line is analytical close to T = 0. As shown by Continentino and Oliveira [16], this 
is a consequence of the irrelevance of the temperature ‘field’. In fact the scaling form 
of the correlation length [16] E K  ( h R  - h L ) - ” f [ F / ( h R  - h k ) ,  T ’ / v (hR  - hff)]. 
Although temperature may behave as a dangerously irrelevant variable in the random 
field problem, the shape of the critical line at low temperatures is dictated by the analytic 
temperature-dependent term of the scaling functions. We expect to find such analaytic 
temperature-dependent behaviour in other equilibrium properties of random field sys- 
tems at very low temperatures. 

To conclude, we have studied the ferromagnet in a random field in hierarchical 
lattices by accompanying the evolution of the probability distributions. Our results are 
in agreement with d, = 2. We have obtained the exponents which control the critical 
behaviour in random fields and in particular the critical dynamics. 

We would like to thank Drs S Mckay, S Galam, E Curado, P M Oliveira and Suzana M 
de Oliveira for useful discussions. We thank CNPq of Brasil for financial support. 
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